Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Free Radic Biol Med ; 219: 64-75, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604314

Cardiovascular diseases (CVDs) are the leading cause of death globally, resulting in a major health burden. Thus, an urgent need exists for exploring effective therapeutic targets to block progression of CVDs and improve patient prognoses. Immune and inflammatory responses are involved in the development of atherosclerosis, ischemic myocardial damage responses and repair, calcification, and stenosis of the aortic valve. These responses can involve both large and small blood vessels throughout the body, leading to increased blood pressure and end-organ damage. While exploring potential avenues for therapeutic intervention in CVDs, researchers have begun to focus on immune metabolism, where metabolic changes that occur in immune cells in response to exogenous or endogenous stimuli can influence immune cell effector responses and local immune signaling. Itaconate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, is related to pathophysiological processes, including cellular metabolism, oxidative stress, and inflammatory immune responses. The expression of immune response gene 1 (IRG1) is upregulated in activated macrophages, and this gene encodes an enzyme that catalyzes the production of itaconate from the TCA cycle intermediate, cis-aconitate. Itaconate and its derivatives have exerted cardioprotective effects through immune modulation in various disease models, such as ischemic heart disease, valvular heart disease, vascular disease, heart transplantation, and chemotherapy drug-induced cardiotoxicity, implying their therapeutic potential in CVDs. In this review, we delve into the associated signaling pathways through which itaconate exerts immunomodulatory effects, summarize its specific roles in CVDs, and explore emerging immunological therapeutic strategies for managing CVDs.


Cardiovascular Diseases , Succinates , Humans , Succinates/metabolism , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/immunology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/pathology , Citric Acid Cycle , Oxidative Stress/drug effects , Signal Transduction/drug effects , Carboxy-Lyases
2.
Cell Death Discov ; 10(1): 53, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38278820

Pathological cardiac hypertrophy is an independent risk factor for heart failure. Disruption of mitochondrial protein homeostasis plays a key role in pathological cardiac hypertrophy; however, the mechanism of maintaining mitochondrial homeostasis in pathological cardiac hypertrophy remains unclear. In this study, we investigated the regulatory mechanisms of mitochondrial protein homeostasis in pathological cardiac hypertrophy. Wildtype (WT) mice, knockout mice, and mice transfected with lentivirus overexpressing mouse C1q-tumor necrosis factor-related protein-3 (CTRP3) underwent transverse aortic constriction or sham surgery. After 4 weeks, cardiac function, mitochondrial function, and oxidative stress injury were examined. For mechanistic studies, neonatal rat cardiomyocytes were treated with small interfering RNA or overexpression plasmids for the relevant genes. CTRP3 overexpression attenuated transverse aortic constriction (TAC) induced pathological cardiac hypertrophy, mitochondrial dysfunction, and oxidative stress injury compared to that in WT mice. TAC or Ang II resulted in compensatory activation of UPRmt, but this was not sufficient to counteract pathologic cardiac hypertrophy. CTRP3 overexpression further induced activation of UPRmt during pathologic cardiac hypertrophy and thereby alleviated pathologic cardiac hypertrophy, whereas CTRP3 knockout or knockdown inhibited UPRmt. ATF5 was a key regulatory molecule of UPRmt, as ATF5 knockout prevented the cardioprotective effect of CTRP3 in TAC mice. In vitro, SIRT1 was identified as a possible downstream CTRP3 effector molecule, and SIRT1 knockout blocked the cardioprotective effects of CTRP3. Our results also suggest that ATF5 may be regulated by SIRT1. Our study demonstrates that CTRP3 activates UPRmt via the SIRT1/ATF5 axis under pathological myocardial hypertrophy, thus attenuating mitochondrial dysfunction and oxidative stress injury.

3.
Int Immunopharmacol ; 126: 111250, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38006752

Bone marrow mesenchymal stem cells (BMSCs) are a promising new therapy for sepsis, a common cause of death in hospitals. However, the global epidemic of metabolic syndromes, including obesity and pre-obesity, threatens the health of the human BMSC pool. The therapeutic effects of BMSCs are primarily due to the secretion of the small extracellular vesicles containing lipids, proteins, and RNA. Accordingly, studies on BMSCs, their small extracellular vesicles, and their modifications in obese individuals are becoming increasingly important. In this study, we investigated the therapeutic potential of small extracellular vesicles (sEVs) from high-fat diet BMSCs (sEVsHFD) in sepsis-induced liver-heart axis injury. We found that sEVsHFD yielded diminished therapeutic benefits compared to sEVs from chow diet BMSCs (sEVsCD). We subsequently verified that IFITM3 significantly differed in sEVsCD and sEVsHFD, alternating in septic liver tissue, and indicating its potential as a remodeling target of sEVs. IFITM3-overexpressed high-fat-diet BMSCs (HFD-BMSCs) showed that corresponding sEVs (sEVsHFD-IFITM3) markedly ameliorated liver-heart axis injury during sepsis. Lastly, we identified the protective action mechanisms of sEVsHFD-IFITM3 in sepsis-induced organ failure and HMGB1 expression and secretion was altered in septic liver and serum while HMGB1 has been demonstrated as a critical mediator of multi-organ failure in sepsis. These findings indicate that IFITM3 overexpression regenerates the therapeutic benefit of sEVs from HFD-BMSCs in sepsis via the HMGB1 pathway.


Extracellular Vesicles , Membrane Proteins , Mesenchymal Stem Cell Transplantation , Sepsis , Animals , Mice , Bone Marrow , Diet, High-Fat , Heart/physiopathology , HMGB1 Protein/metabolism , Liver/physiopathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Sepsis/therapy
4.
J Hazard Mater ; 463: 132891, 2024 02 05.
Article En | MEDLINE | ID: mdl-37939560

Microalgae-based bioremediation is likely to be challenged by the microplastics (MPs) in wastewater induced by the widely use of surgical masks (SMs) during COVID-19. However, such toxic impact was generally evaluated under high exposure concentrations of MPs, which was not in agreement with the actual wastewater environments. Therefore, this study investigated the microalgal cellular responses to the surgical mask exudates (SMEs) in wastewater and explored the underlying inhibitory mechanism from the molecular perspective. Specifically, 390 items/L SMEs (including 200 items/L MPs which was the actual MP level in wastewater) significantly inhibited nutrient uptake and photosynthetic activities interrupted peroxisome biogenesis and induced oxidative stress which destroyed the structure of cell membrane. Moreover, the SMEs exposure also affected carbon fixation pathways, suppressed ABC transporters while promoted oxidative phosphorylation processes for the ATP accumulation These comprehensive processes led to an 8.5% reduced microalgae growth and variations of cellular biocomponents including lipid, carbohydrate, and protein. The increased carotenoids and consumed unsaturated fatty acid were considered to alleviate the SMEs-induced stress, and the enhanced EPS secretion facilitated the homogeneous aggregation. These findings will enhance current understandings of the SMEs effects in wastewater on microalgae and further improve the practical relevance of microalgae wastewater bioremediation technology.


Chlorella , Microalgae , Wastewater , Chlorella/metabolism , Masks , Plastics/metabolism , Photosynthesis , Microalgae/metabolism , Biomass
5.
MedComm (2020) ; 4(6): e413, 2023 Dec.
Article En | MEDLINE | ID: mdl-37881786

Epicardial adipose tissue (EAT) is located between the myocardium and visceral pericardium. The unique anatomy and physiology of the EAT determines its great potential in locally influencing adjacent tissues such as the myocardium and coronary arteries. Classified by research methodologies, this study reviews the latest research progress on the role of EAT in cardiovascular diseases (CVDs), particularly in patients with metabolic disorders. Studies based on imaging techniques demonstrated that increased EAT amount in patients with metabolic disorders is associated with higher risk of CVDs and increased mortality. Then, in-depth profiling studies indicate that remodeled EAT may serve as a local mediator of the deleterious effects of cardiometabolic conditions and plays a crucial role in CVDs. Further, in vitro coculture studies provided preliminary evidence that the paracrine effect of remodeled EAT on adjacent cardiomyocytes can promote the occurrence and progression of CVDs. Considering the important role of EAT in CVDs, targeting EAT might be a potential strategy to reduce cardiovascular risks. Several interventions have been proved effective in reducing EAT amount. Our review provides valuable insights of the relationship between EAT, metabolic disorders, and CVDs, as well as an overview of the methodological constructs of EAT-related studies.

6.
Cell Commun Signal ; 21(1): 109, 2023 05 11.
Article En | MEDLINE | ID: mdl-37170235

Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.


Endothelial Cells , Myocardial Infarction , Humans , Animals , Mice , Endothelial Cells/metabolism , Macrophages/metabolism , Myocytes, Cardiac/metabolism , Monocytes/metabolism , Myocardium/metabolism , Mice, Inbred C57BL
7.
Biomed Pharmacother ; 161: 114324, 2023 May.
Article En | MEDLINE | ID: mdl-36958192

Gastrodia elata exhibits extensive pharmacological activity; its extract gastrodin (GAS) has been used clinically to treat cardiovascular diseases. In the present study, we examined the effect of GAS in a mice model of pathological cardiac hypertrophy, which was induced using transverse aortic constriction (TAC). Male C57BL/6 J mice underwent either TAC or sham surgery. GAS was administered post-surgically for 6 weeks and significantly improved the deterioration of cardiac contractile function caused by pressure overload, cardiac hypertrophy, and fibrosis in mice. Treatment with GAS for 6 weeks upregulated myosin heavy chain α and down-regulated myosin heavy chain ß and atrial natriuretic peptide, while insulin increased the effects of GAS against cardiac hypertrophy. In vitro studies showed that GAS could also protect phenylephrine-induced cardiomyocyte hypertrophy, and these effects were attenuated by BAY-876, and increased by insulin. Taken together, our results suggest that the anti-hypertrophic effect of gastrodin depends on its entry into cardiomyocytes through GLUT4.


Insulins , Myosin Heavy Chains , Animals , Male , Mice , Cardiomegaly/drug therapy , Disease Models, Animal , Insulins/pharmacology , Insulins/therapeutic use , Mice, Inbred C57BL , Myocytes, Cardiac , Glucose Transporter Type 4/metabolism
8.
Biomed Pharmacother ; 158: 114100, 2023 Feb.
Article En | MEDLINE | ID: mdl-36538860

Myocardial ischemia-reperfusion (MI/R) is a major risk factor for cardiovascular disease. At present, reducing oxidative stress and apoptosis is a crucial therapeutic strategy for ameliorating MI/R injury. However, there is a lack of drugs targeting oxidative stress and apoptosis for the clinical therapy of MI/R. Bergenin is a reportedly effective agent with antioxidative and antiapoptotic activity against acute injury. Nevertheless, the roles and potential mechanisms of bergenin against MI/R injury remain unknown. Here, we hypothesized that bergenin attenuated MI/R-induced apoptosis and reactive oxygen species (ROS) production via SIRT1. Mice were subjected to MI/R and treated with bergenin, after which the cardiac function, cardiomyocyte apoptosis, LDH release, and MDA content were evaluated. In vitro, myocardial injury model of H9c2 cells was induced by simulated ischemia/reperfusion (SI/R), apoptosis and oxidative stress was decreased after treated with bergenin. Bergenin significantly reduced myocardial apoptosis and ROS generation in vitro and improved cardiac function in vivo. Intriguingly, bergenin remarkably decreased apoptosis in cardiac tissue accompanied by SIRT1 upregulation following MI/R injury. Further studies showed that inhibiting SIRT1 blocked bergenin's beneficial impact against apoptosis following SI/R injury through excessive oxidative stress and depression of the Bcl2 to Bax ratio. Collectively, these findings indicate that bergenin alleviates MI/R injury by ameliorating myocardial apoptosis and oxidative damage via the SIRT1 signaling pathway.


Myocardial Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/metabolism , Sirtuin 1/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Apoptosis , Oxidative Stress , Myocytes, Cardiac
...